Should we accept GM food as the future fare?

Original article link

March 28, 2016

Dr Lee Hickey, from the Queensland Alliance for Agriculture and Food Innovation at the University of Queensland, inspects the wheat crops in one of the speed breeding facilities.

Dr Lee Hickey, from the Queensland Alliance for Agriculture and Food Innovation at the University of Queensland, inspects the wheat crops in one of the speed breeding facilities.Photo: Michelle Smith

Andrew Masterson

One of the longest running, loudest and bitterest debates about food in modern times centres on the relative virtues of genetically modified and organic crops. Advocates of each decry the other, while simultaneously boosting their choice as the only sensible solution for meeting the world’s future food needs.

This positions the article’s author as existing outside the debate, as the objective voice of reason watching debate unfold.

A report published earlier this month, however, might be the catalyst to end the division and, just perhaps, bring the two camps together to focus on a common goal.

The study, conducted by US plant geneticists Johannes Kromdijk and Stephen Long of the University of Illinois, strongly suggests that all types of crop breeding – including genetic engineering and organic – need to be pressed urgently into service if we are to escape famine caused by rising population and climate change.

This links food with population and climate, but in a very simple fashion that suggests issue on one hand and food as solution on the other. The optimistic promise of an end to debate suggests perfectly objective facts and obliterate the notion of subjectivity.

Home-grown organic strawberries.

Home-grown organic strawberries.

Home-grown organic is presented as wholesome and aesthetically pleasing, an agreeable image that goes with the promise of pleasing opposing sides in the GM food debate.

Published in the Royal Society’s journal Proceedings B, the authors estimate that the world has perhaps until the mid-2040s to dramatically improve cereal crop yields in order to offset severe shortages.

“With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to crop genetic engineering, should be employed,” they wrote. They called for “vastly increased” private and public investment in the process.

The main game, the researchers suggest, lies in employing every available horticultural strategy to breed better cereal crops. The goal is not to plant more wheat, for instance, but to make the wheat that is planted better at changing sunlight into edible grain.

A single source of research is paraded as an ultimate solution and imbued with name-dropping credibility. “All available technologies” is a phrase very open to interpretation, particularly when one accounts for the unknown future. This is taking the very complex problem of food shortages and prescribing an easy solution: using technology to maximize food output. The conclusions are also based on the assumed continuation of the present average diet, not considering that people could change what they eat, or how food waste is dealt with. Food shortage is pinpointed falsely to agricultural production only, presenting GM food as a necessary solution rather than a probable approach. Even within this narrow sphere the logic is oversimplified, not remotely touching the questions of biological diversity and sustainability raised by Beth Ann Fennelly.

A healthy kale crop.

A healthy kale crop.Photo: Simone De Peak

Again, the photography emphasizes health, beauty, and earthy nature, minimizing visual indicators of industrialization or technology.

It is a quest already under way in Australia, through the world-leading research of plant geneticist Dr Lee Hickey and his team at the University of Queensland.

“Historically we’ve seen dramatic improvements in wheat yield since the 1940s, but the rate of genetic progress has slowed, and this has got the world quite worried because of the booming population, and meeting the demand by 2050,” he said.

“We haven’t yet seen any dramatic increase in improving the efficiency with which sunlight is converted to biomass in plants. This could be done through genetic engineering processes and could be a key component of us meeting the future demand.”

Harvesting fresh near organic vegetables and fruit from the vegetable garden.

Harvesting fresh near organic vegetables and fruit from the vegetable garden.Photo: Jennifer Soo

While certainly open to GM as a way of increasing crop yields, Hickey primarily  uses conventional cross-breeding methods, helped by sophisticated genome tinkering and high-intensity laboratory techniques.

A distinction is drawn between cross-breeding and laboratory techniques of genetic modification, two methods that GM criticizers and defenders alike tend to consider as essentially the same. The increased level of nuance here blurs the line between traditional and novel, raising questions about the naturalization process of technology in society. Although a line is drawn, there is little contrast in connotation, presenting modernization of food as a sophisticated technical process. Consequences beyond the bounds of the lab experiment are largely invisible.

He and his team are developing strains, mainly wheat and barley, that are ever more heat, drought and disease-resistant.

One of the most effective research techniques they use is called speed-breeding – a lab-based method of producing up to six wheat crops a year, compared with the single one farmers are able to grow in fields. The rapid growth cycles permit equally rapid research, using both conventional techniques and DNA modification.

A basket of fresh organic purple and white kohlrabi on display at a local farmer's market.

A basket of fresh organic purple and white kohlrabi on display at a local farmer’s market.Photo: Shelley L. Dennis

“We’re using DNA markers to inform our decisions about which plants carry desirable genes. That’s pretty close to genetic engineering. Essentially we need to clone the genes before we can create DNA markers that are perfectly linked to the trait we’re after,” Hickey said.

It’s an approach that is unlikely to please Australia’s organic food advocates, who stress the need for crops to be “natural” and grown without expensive inputs such as factory-made fertilisers and pesticides. From that perspective, organic farming has a strong role to play in meeting future global food needs, especially in energy-challenged developing economies.

The call by Kromdijk and Long for all hands on deck, however, might go some way towards breaking down the differences between the organic and GM camps, a division that many observers regard as unjustified – on both rational and biological grounds.

In a very real sense, they point out, every fruit, vegetable and cereal grown today is genetically modified, the result of millennia of cross-breeding aimed at developing desirable qualities. Kale, broccoli, Brussels sprouts and cauliflower, for instance, have never existed in the wild, and are all purposely developed variants of a species of weedy cabbage.

This is a common argument brought up in defense of genetic modification- for example in this internet exchange– that what is considered natural in the present moment is actually naturalized technology at work. By this logic, the fear culture surrounding genetic modification is hypocritical if it fails to ascribe the same panic to ‘normal’ foods as to explicitly modified ones. It is a reclaiming of the term genetic modification, attempting to remove its alien, science-fiction associations and place it instead as a common phenomenon in the modern world.

But there is also another form of genetic modification that has been used for decades, and that has been largely overlooked by organic advocates. This is strange, because it has some genuinely scary aspects to it. It’s called mutagenesis, and involves blasting plants with radiation.

The mere mention of multiple types of genetic modification is a breath of fresh air in a discourse largely defined by binary, pro/con debate. That this article characterizes different types of genetic modification as benevolent and scary speaks to its more detailed and inconsistency-embracing take on the same old debate.

Today, at farmers’ markets and in grocery stores around the country, people are happily filling hessian shopping bags with organic ruby red grapefruit and organic Nijisseiki pears.  And soon, many organic farmers are preparing to plant a popular Australian oat variety known as Echidna.

The pears, the citrus and the cereals are all excellent, nutritious and lovely, but their existence raises a curious question. Is it possible for a food crop to be simultaneously organic and genetically modified?

Evidently so. All three plants were created, several decades ago, by radiation-induced mutagenesis. Their radioactive provenance is recorded on a global permanent record called the Mutant Variety Database (MVD), operated jointly by the United Nations Food and Agriculture Organisation and the International Atomic Energy Agency.

The article asks what is seemingly a thought-provoking question, and then immediately closes it off, shutting readers out of active engagement. Dealing with the simultaneous terms of organic and genetically modified hints at the many specificities in food processes not covered by the current language.

The MVD currently lists 3233 edible or ornamental mutagenic plant varieties. The most recent addition was a type of cherry developed in Turkey in 2014, but, in general, these days mutagenesis is rather less popular as a method of genetic modification than it used to be. And for good reason.

“There are two main ways that plant breeders can use this tool to create variation,” explained Hickey. “One is through gamma radiation and the other is through a chemical called ethyl methanesulfonate or EMS. Basically both of these things induce a higher rate of mutation in the genome. And both, when we are exposed to them, cause us to get cancer.”

‘Basically’ is an understatement, and to say that chemicals cause cancer is a fraught claim. It is not entirely clear whether the amount and type of exposure to these chemicals, through eating products of mutagenesis, would noticeably increase chances of cancer or directly cause it. It’s impossible to tell exactly what exaggeration and sensationalism is at work here, but the fact that only improper use is associated with health risks in labs is telling.

The technique is still in use, particularly in rice development, but its decline in popularity among plant geneticists is only partly because of the health risks to lab workers associated with improper use.Mostly it’s because it’s just not that efficient.

Plants are blasted with radiation as a means of accelerating the genome’s natural mutation rate. Scientists then have to trawl through the resulting changes to DNA in individual plant sex cells – or check which plants grow better from irradiated seeds – and then single them out for further breeding.

“Basically, you have no control whatsoever, unlike a technology like genetic engineering, where you are specifically targeting a known gene,” said Hickey.

While DNA changes in fruit, vegetables and cereals resulting from gene-editing have come under ferocious and sustained attack by organisations that represent organic farmers, those arising from mutagenesis have largely avoided scrutiny.

“The organic industry has no formal position on mutant varieties,” said Jan Denham, chairwoman of the National Association for Sustainable Agriculture Australia (NASAA). She said she is seeking input from the organic industry to formulate a policy on the matter.

This further reveals the underlying hypocrisy and uncertainty involved in the fear-based climate surrounding genetic modification. As with any complex issue, the thresholds seem clear at a distance, but closer inspection reveals delicate boundaries of definitions that undermine the sense in drawing a definitive ideological line.

A spokesperson for Australian Certified Organic (ACO) – an organisation that labels over 16,000 products as organic – said guidelines ruled out the use of seeds or seedlings that were “irradiated”. However, at least two Australian ruby red grapefruit growers operate under ACO approval, which suggests that ancestral exposure to gamma rays is not a barrier to organic authenticity.

Thus, if genetic modification by breeding is acceptable, and food crops created by gamma radiation cause no uproar, what is so special about varieties made by gene editing?

This question invites reader thought and reflection, although only based on prior information given in the article. It’s the culmination of a pointed argument, limiting possible answers. The question does, however, point to a need to question underlying assumptions about the character of the modern food industry, to interrogate why certain attitudes arise.

This is a call to accept gene editing as a part of the food industry, alongside the ranks of selective breeding and radiation. It positions genetic modification as another in a long string of gradually accepted scientific advancements.

“Most of the time we’re talking about fixing or inserting a gene into a species that currently exists,” said Hickey.

“The problem is that to do it by traditional means takes a long time. It takes up to 20 years to develop a new variety – by the time we cross it with another variety and identify an elite version that can be commercialised. It’s basically just speeding up this process.”

It’s an approach greatly favoured by the Grains Research and Development Corporation, which funds Hickey’s research, but it also raises what might turn out to be a critical question.

Can a crop variety engineered in five years, as opposed to a very similar variety cross-bred in 20, ever be considered suitable for organic cultivation? Millions of lives might depend on the answer.

This conclusion answers itself- to say the genetic modification is ‘very similar’ to cross-breeding suggests that its acceptance into organic agricultural practices is logically inevitable.

The very last sentence is a grandiose simplified guilt trip for opposers of genetic modification: millions of lives are supposedly tied to GM’s fate, obscuring the hugely numerous other related issues and partial solutions that can and will impact those lives.

This article delves deeply into genetic modification using specific terminology to tease out illogical assumptions in public perception, defending genetic modification without really addressing any of the causes for concern or any of the myriad of global contributing factors. It constructs contemporary food production as being in a middle stage of history, not something radically new but a reasonable extrapolation of the past. The view of the future, similarly, envisions no endpoint, no unavoidable brink of collapse- there is hope not that the industry is problem-free, but that people will be equipped with technology and rational scientific thought to deal with problems that arise. The title is somewhat disheartening, calling for passive acceptance of an inevitable future, but the main body helps to suggest that acceptance of genetic modification makes sense as an active choice.

Advertisements